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Abstract

To identify genes that were altered by spinal cord injury (SCI), we used complementary DNA microarray consisting

1176 rat genes. Rats were subjected to contusive injury of the thoracic spinal cord. Sham animals received only a

laminectomy. Twenty-four hours later, spinal cord was dissected out, a 32P labeled probe was prepared and hybridized

to the microarray. We identified three genes that showed a greater than 2-fold increase in SCI tissue, heat shock 27-kDa

protein, tissue inhibitor of metalloproteinase-1 and epidermal fatty acid-binding protein. Seven genes, lecithin:choles-

terol acyltransferase, dipeptidyl aminopeptidase related protein, phospholipase C delta 4, plasma membrane Ca21-

ATPase isoform 2, G-protein G(O) alpha subunit, GABA transporter 3, and neuroendrocrine protein 7B2 were down-

regulated greater than 50% in SCI tissue. Changes in expression of these genes were confirmed by reverse transcription-

polymerase chain reaction. These genes may play a role in the response to tissue damage or repair following SCI. q 2002

Published by Elsevier Science Ireland Ltd.
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The response to spinal cord injury (SCI) is known to

occur in two phases. The first phase, the primary injury, is

the mechanical trauma initially sustained. The second

phase, termed secondary injury, is posttraumatic tissue

damage. The neurological deficits related to secondary

injury occur within minutes of the injury and can continue

for days, weeks or longer [2]. This autodestructive process

includes physiological, biological and metabolic changes

that result in axonal damage and cell loss. In addition, it

has become increasingly recognized that the nervous system

also initiates reactive process in response to trauma that are

neuroprotective and regenerative [1,14]. All these responses

to SCI are, in part, reflected in changes in gene expression.

New technologies to identify the nervous system’s response

at the molecular level have increased in the last decade.

Microarray analysis is a powerful new tool to quickly exam-

ine expression of thousands of genes [2,10]. In the present

study, we used complementary DNA (cDNA) microarray

technology to identify genes that were altered after SCI.

The changes in gene expression identified on microarrays

after SCI were confirmed using reverse transcription-poly-

merase chain reaction (RT-PCR).

Male Sprague–Dawley rats (7 weeks of age) were

subjected to contusive injury of the thoracic spinal cord

using the NYU impactor following anesthesia with sodium

pentobarbital (50 mg/kg i.p.) [4]. After a laminectomy at the

tenth thoracic vertebra to expose the T12 spinal segment, a

10 g weight was dropped 2.5 cm onto the dura mater (n ¼ 5

for microarray; n ¼ 3 for RT-PCR). Sham animals received

only the laminectomy (n ¼ 5 for microarray; n ¼ 3 for RT-

PCR). Twenty-four hours later, the animals were anesthe-

tized and 15 mm of spinal cord surrounding the epicenter of

injury or the same area in the sham animals was dissected

out and homogenized. The experimental protocol was

approved by the Animal Care and Use Committee at

NIDCR, NIH and the International Association for the

Study of Pain ethical guidelines were adhered to in these

experiments [20]. Samples from the injured or sham animals

were pooled for cDNA microarray. 32P labeled probes were

prepared using the Atlas Pure Total RNA Labeling System

(Clontech, Palo Alto, CA). Poly(A)1 RNA was isolated

from total RNA (50 mg) and treated with DNase I.

Poly(A)1 RNA was transcribed by MMLV reverse tran-
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scriptase in the presence of [a-32P]dATP and specific

primers of the genes represented on the Atlas Rat 1.2

Array, a cDNA microarray containing 1176 known genes

(Clontech). The radiolabelled cDNA probes were hybri-

dized to the microarray membranes at 688C overnight. All

probes were 1 £ 106 cpm. After a series of washes, the

membranes were analyzed by autoradiography and quanti-

fied using a PhoshorImager system and ImageQuant soft-

ware (Molecular Dynamics, Sunnyvale, CA). Gene

expression from the SCI tissue was compared to that from

sham animals. Expression levels of individual genes were

represented in arbitrary units after subtracting the back-

ground and normalization to glyceraldehyde 3-phosphate

dehydrogenase (GAPDH). A greater than 2-fold increase

or a greater than 50% decrease in expression were used as

criteria for a meaningful change in gene expression between

the SCI and sham groups. RT-PCR was performed with total

RNA from individual animals in the SCI and sham groups

and was distinct from that used for the microarray analysis.

cDNA was synthesized with oligo (dT) primer and MMLV

reverse transcriptase (Advantage RT-for-PCR kit, Clontech)

and amplified by PCR during 25 cycles at 948C for 30 s,

558C for 30 s, and 728C for 1 min (Taq PCR Master Mix Kit,

Qiagen, Valencia, CA). PCR products were analyzed by

electrophoresis in 2% agarose gels. Images of ethidium-

bromide-stained bands were obtained with a CCD camera

system (Atto, Tokyo, Japan) and quantified using Image-

Quant software. The messenger RNA (mRNA) level of

each sample for each gene was normalized to GAPDH.

The specific primers used for amplification are listed on

Table 1 and were designed by Clontech. Data are expressed

as means ^ SD. The RT-PCR data were analyzed using the

Student’s t-test.

Several differentially expressed genes were observed on

the microarray between control spinal cord (Fig. 1A) and

injured spinal cord (Fig. 1B). For example, in the SCI array,

the expression of heat shock 27-kDa protein (HSP27) was

increased (compare Figs. 1C,D, arrow) while the expression

of lecithin:cholesterol acyltransferase (LCAT) (compare

Figs. 1E,F, arrowhead) was decreased. Alterations in gene

expression in injured spinal cord compared to control spinal

cord could be differentiated in ten genes by scatter plot
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Table 1

Specific primers used for amplificationa

Gene Microarray SCI/control RT-PCR GenBank # Primers

Control SCI

Heat shock 27-kDa protein

(HSP27)

4.22 0.90 1.91* M86389 5 0-ACGTCAACCACTTCGCTCCTGAGG-3 0

5 0-CTTGGCTCCAGACTGTTCCGACTC-3 0

Tissue inhibitor of

metalloproteinase-1 (TIMP-1)

2.81 0.23 0.94* L31883 5 0-CTGCAACTCGGACCTGGTTATAAGG-3 0

5 0-AACGGCCCGCGATGAGAAACTCC-3 0

Epidermal fatty acid-binding

protein (E-FABP)

2.08 0.48 0.78* U13253 5 0-GGCCAAACCAGACTGCATCATTACC-3 0

5 0-TCTCATAGACCCGAGTACAGATGGC-3 0

Lecithin:cholesterol

acyltransferase (LCAT)

0.34 0.34 0.12* U62803 5 0-CAGAAGCTGGCAGGACTGGTAGAG-3 0

5 0-TGATCGGGATGCCCTGGTTGTCAC-3 0

Dipeptidyl aminopeptidase

related protein (DPP6)

0.44 0.27 0.09* M76426 5 0-CCGTGTTCTCCAAGGATGGCCGG-3 0

5 0-GCGCTGTAGAGGTGTCGTCTTCGT-3 0

Phospholipase C delta 4

(PLCD4)

0.45 0.13 0.06* D50455 5 0-GTCCAAGGCCAAGAACCTCATCAGG-3 0

5 0-CTAACGGGCTTCATGGGATTGAAGG-3 0

Plasma membrane Ca21-

ATPase isoform 2 (PMCA2)

0.47 0.63 0.42* J03754 5 0-ATCCAGACACAGATCCGCGTCGTG-3 0

5 0-GATTTGCTCGTGTCGGTCGTCAGG-3 0

G-protein G(O) alpha subunit

(GNAO)

0.47 0.24 0.18* M17526 5 0-AAACAACTGGCATCGTAGAAACCCAC-3 0

5 0-CAGATGGAGTCGAAGAGCATGAGAG-3 0

GABA transporter 3 (GAT3) 0.48 0.71 0.31* M95738 5 0-CTGGGATCTGTGCGGGCATCTTC-3 0

5 0-GGTACCGTCGCCTTTGACCTTGG-3 0

Neuroendrocrine protein 7B2

(7B2)

0.48 0.62 0.45* M63901 5 0-AGCTCACGAGGGTCTTCAGCATCTG-3 0

5 0-CCACTTGCCCAAACCTGGGTAGTC-3 0

GAPDH 5 0-TGTCAACGGATTTGGCCGTATTGGC-3 0

5 0-GAAGACGCCAGTAGACTCCACGAC-3 0

a *P, 0.05.
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analysis (Fig. 2). The greater than 2-fold up-regulated genes

were HSP27, tissue inhibitor of metalloproteinase-1 (TIMP-

1) and epidermal fatty acid-binding protein (E-FABP). The

seven down-regulated genes were LCAT, dipeptidyl amino-

peptidase related protein (DPP6), phospholipase C delta 4

(PLCD4), plasma membrane Ca21-ATPase isoform 2

(PMCA2), guanine nucleotide-binding protein G(O) alpha

subunit (GNAO), gamma-aminobutyric acid transporter 3

(GAT3) and neuroendrocrine protein 7B2 (7B2). RT-PCR

was performed with total RNA from individual SCI and

sham surgery animals. RT-PCR indicated that the expres-

sion of HSP27, TIMP-1 and E-FABP were up-regulated and

that of LCAT, DPP6, PLCD4, PMCA2, GNAO, GAT3 and

7B2 were down-regulated in injured spinal cord (Fig. 3).

Quantification of gene expression identified that all changes

had a statistical significance (P , 0:05). These observations

on RT-PCR analysis confirm the changes in gene expression

found with the microarray. These data are summarized in

Table 1.

Three genes, HSP27, TIMP-1, and E-FABP exhibited

differential induction after SCI. HSP27 is a low molecular

weight heat shock protein and is considered to be a mole-

cular chaperone [17]. In other central nervous system injury

models HSP27 was increased in glial cells where it is

thought to play a role in protection from cell death [8].

HSP27 may have a similar role following SCI. TIMP-1 is

an inhibitor of matrix metalloproteinases (MMPs). The

induction of TIMP-1 has previously been observed in acti-

vated astrocytes circumscribing the lesions in an animal

model of experimental allergic encephalomyelitis (EAE)

[16]. TIMP-1 likely acts to confine the extent of tissue

destruction by MMPs in the EAE model. Our data suggests

that TIMP-1 may have a similar role following SCI or may

be involved in shaping reconstruction. E-FABP is a fatty

acid binding protein that binds hydrophobic ligands such

as long chain free acids [5]. Fatty acid binding proteins

are involved in the intracellular transport of free fatty acid

molecules by facilitating their movement within the cell

nucleus and cytoplasm. Release of free fatty acids (FFAs)

is increased in SCI where it contributes to edema and

inflammation related to secondary tissue damage [6]. An

increase in E-FABP may be a protective response to the

increase in FFA after SCI. This also suggests that cells in

the injured spinal cord may mobilize FFAs to synthesize

new membranes.

The present study also demonstrated differential reduc-

tion of gene expression after SCI. LACT is an enzyme made

in the liver, brain and testes that catalyzes the esterification

of cholesterol in high density lipoprotein, thereby playing a

role in removal of excess cholesterol from the tissue [19]. In
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Fig. 1. PhoshorImager photographs of microarray membranes

containing 1176 rat genes hybridized with a 32P labeled probe

made from control spinal cord mRNA (A); or injured spinal cord

mRNA (B). Enlargements of corresponding areas of the micro-

arrays comparing control (C and E); and SCI (D and F). The

expression of HSP27 was increased (compare spot at arrow in

C and D) while the expression of LCAT (compare spot at arrow-

head in E and F) was decreased in SCI tissue.

Fig. 2. Scatter plot analysis representing gene expression of the

microarray analysis in arbitrary units. The position of ten genes

whose expression was different in injured spinal cord and

control spinal cord are marked by filled circles. Three genes,

HSP27, TIMP-1 and E-FABP showed a greater than 2-fold

increase in SCI tissue. Seven genes, LCAT, DPP6, PLDC4,

PMCA2, GNAO, GAT3 and 7B2 were down-regulated greater

than 50% in SCI tissue. The broken lines indicate 2-fold expres-

sion differences between control and SCI.
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the brain, LCAT has been localized to glial cells [3].

Cholesterol is a major component of plasma membranes

and myelin. Down regulation of LACT may be a response

to an increase in mobilization of cholesterol to synthesize

new membranes and myelin or a decreased presence of

cholesterol in the damaged tissue. PMCA2 is one of four

isoforms of calcium pumps that is found in the nervous

system [7]. Calcium pumps regulate intracellular Ca21

levels by Ca21 extrusion from cells. It is known that intra-

cellular Ca21 levels are increased after SCI and a significant

increase in Ca21 may be cytotoxic [6]. A decrease in

PMCA2 expression may contribute to intracellular Ca21

accumulation after SCI. Some down-regulated genes, 7B2,

DDP6 and GAT3 involve in neuropeptides and neurotrans-

mitters. 7B2 designates an acidic protein which is stored

within and released from dense core secretory granules of

neuronal and endocrine cells [12]. 7B2 is regarded as a

peptide/hormone-associated secretory protein. 7B2 is

widely present in spinal neurons, where it may be involved

in the secretory mechanisms of neuropeptides [13]. DPP6 is

a peptidase that regulates the biological activity of neuro-

peptides by converting precursors to active forms or active

forms to inactive forms [18]. GAT3 is one of four isoforms

of GABA transporters and involved in the termination of

GABA transmission by rapid uptake of GABA [15]. These

suggests that some neurotransmitter systems may loose their

functions following SCI. PLCD4 and GNAO which have a

role in the intracellular second messenger system were also

down-regulated following SCI. PLCD4 is a d-type phospho-

lipase C that plays an important role in receptor-mediated

signal function by generating two second messenger mole-

cules, inositol 1,4,5-trisphosphate and diacylglycerol, from

phosphatidylinositol 4,5-biphosphate [11]. GNAO is an a

subtype of the guanine nucleotide binding proteins (G-

protein) [9]. G-proteins are a family of proteins that couple

extracellularly activated membrane receptors to intracellu-

lar second messenger enzymes. The down regulation of

those genes suggests that the some intracellular signaling

system may be impaired selectively in injured spinal cord.
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Fig. 3. RT-PCR was performed with specific primers for the ten

genes whose gene expression had a greater than 2-fold expres-

sion difference between control and SCI on the microarrays. (A)

Photographs represent examples of ethidium-bromide-stained

bands of HSP27, LCAT and GAPDH in control (lane 1–3, n ¼ 3)

and SCI (lane 1–3, n ¼ 3). (B) Quantification of the levels of

HSP27, TIMP1 and E-FABP mRNA identified increases while

that of LCAT, DPP6, PLCD4, PMCA2, GNAO, GAT3 and 7B2

mRNA were decreased significantly in injured spinal cord as

compared to control (*P , 0:05). The mRNA levels were normal-

ized to GAPDH and expressed as means ^ SD. These changes in

gene expression were consistent with that observed on the

microarrays.
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